Цифровой преобразователь температуры Для термопар, для монтажа в соединительную головку и на DIN-рейку Модели T16.H, T16.R

WIKA типовой лист TE 16.01

Другие сертификаты приведены на стр. 10

Применение

- Обрабатывающая промышленность
- Машиностроение и производство технологических установок

Особенности

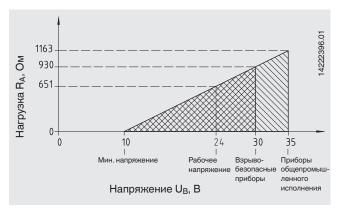
- Для работы со всеми стандартными термопарами
- Высокая точность
- Установка параметров с помощью конфигурационного программного обеспечения WIKAsoft-TT и электрическое подключение с помощью быстроразъемного соединителя magWIK
- Имеется также доступ к соединительным клеммам снаружи
- Электромагнитная совместимость в соответствии с новейшим стандартом (EN 61326-2-3:2013)

Рис. слева: Исполнение для монтажа в соединительную головку, модель Т16.Н Рис. справа: Исполнение для монтажа на DIN-рейку, модель T16.R

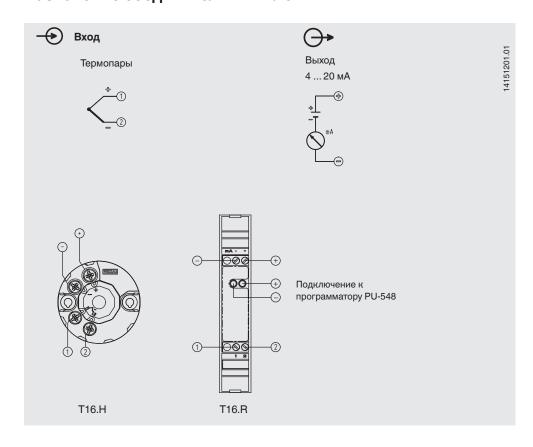
Описание

Данные преобразователи температуры предназначены для универсального использования на промышленных предприятиях и в машиностроении, а также в обрабатывающей промышленности. Они обеспечивают высокую точность и защиту от электромагнитных помех (ЭМС). С помощью конфигурационного программного обеспечения WIKAsoft-TT и программатора модели PU-548 можно легко, быстро и наглядно установить параметры преобразователей температуры модели Т16.

Помимо выбора типа чувствительного элемента и диапазона измерений программное обеспечение выдает сигналы ошибок, осуществляет демпфирование и хранение описаний нескольких точек измерения и настроек процесса. Кроме того, программное обеспечение WIKAsoftTT поддерживает функцию записи, с помощью которой отображаются температурные профили термопары, подключенной к преобразователю


Преобразователь модели Т16 также осуществляет самые разнообразные функции контроля, такие как определение обрыва чувствительного элемента и контроль диапазона измерений. Более того, данные преобразователи обладают циклической функцией всесторонней самодиагностики.

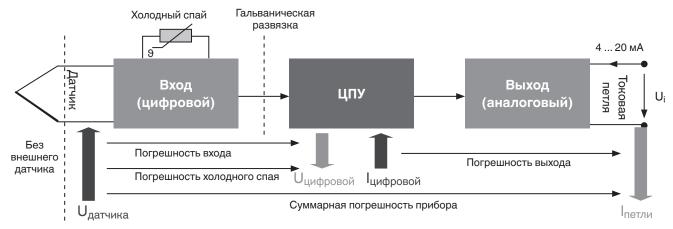
Технические характеристики


Питание	
Напряжение U _B	10 35 В пост. тока
Нагрузка R _A	$R_A \le (U_B - 10 B) / 0,0215 A c R_A в Омах и U_B, B$
Параметры взрывобезопасных соединений	см. "Характеристики безопасности (взрывобезопасное исполнение)"
Сопротивление изоляции (тестовое напряжение, приложенное между входом и аналоговым выходом)	1500 В перем. тока

Нагрузочная характеристика

Допустимая нагрузка зависит от напряжения питания цепи.

Назначение соединительных клемм


Вход преобразователя температуры			
Тип термопары	Макс. конфигурируемый диапазон измерения (MR)	Стандарт	Минимальный диапазон измерения (MS)
J	-210 +1200 °C (-346 +2192 °F)	MЭK 60584-1	50 K
K	-270 +1300 °C (-454 +2372 °F)	MЭK 60584-1	50 K
В	0 1820 °C (32 3308 °F)	MЭK 60584-1	200 K
N	-270 +1300 °C (-454 +2372 °F)	MЭK 60584-1	50 K
R	-50 +1768 °C (-58 +3214,4 °F)	MЭK 60584-1	150 K
S	-50 +1768 °C (-58 +3214,4 °F)	MЭK 60584-1	150 K
T	-270 +400 °C (-454 +752 °F)	MЭK 60584-1	50 K
E	-270 +1000 °C (-454 +1832 °F)	MЭK 60584-1	50 K
С	0 2315 °C (32 4199 °F)	MЭK 60584-1	150 K
A	0 2500 °C (32 4532 °F)	MЭK 60584-1	150 K
L (DIN 43710)	-200 +900 °C (-328 +1652 °F)	DIN 43710	50 K
L (ΓΟCT R 8.585 - 2001)	-200 +800 °C (-328 +1472 °F)	-	50 K

Заводская конфигурация		
Чувствительный элемент	Тип К	
Диапазон измерения	0 600 °C (32 +1112 °F)	
Сигнализация ошибки	Выход за нижний предел	
Демпфирование	Выключено	

Аналоговый выход, пределы выходного сигнала, сигнализация			
Аналоговый выход, конфигурируемый	Линеаризация по температуре в соответствии с МЭК 60584/DIN 43710		
Пределы выходного сигнала в соответствии с NAMUR NE43	Нижний предел Верхний предел 3,8 мА 20,5 мА		
Значение тока для активации сигнализации, конфигурируемое в соответствии с NAMUR NE43	Выход за нижний предел < 3,6 мА (3,5 мА)	Выход за верхний предел > 21,0 мА (21,5 мА)	

Время отклика	
Время выхода на режим (время получения первого результата измерения)	Макс. 4 с
Время выхода на режим	По истечении макс. 45 минут достигается точность, заявленная в технических характеристиках (из-за внутреннего холодного спая)
Время отклика	< 0,9 с (типовое значение < 0,7 с)
Демпфирование	Конфигурируется от 1 до 60 с
Типовое значение скорости измерения	Измеренное значение обновляется с частотой приблизительно 8/с

Характеристики погрешности

Характеристики погрешности относятся ко всему прибору в целом.

(Погрешность $_{\text{суммарная}} =$ Погрешность $_{\text{вход}}$ + Погрешность $_{\text{холодного спая}}$ + Погрешность $_{\text{выход}}$)

Для определения суммарной погрешности необходимо учитывать все возможные ее типы. Все типы погрешностей указаны в приведенной ниже таблице.

Особенности			
Нормальные условия	Температура калибровки T_{ref} = 23 °C ±3 K (73,4 °F ±5,4 °F) Напряжение U_{i_ref} = 24 B Атмосферное давление = 860 ,,, 1060 гПа Все значения погрешности приведены для нормальных условий.		
Заявленная в технических характеристиках погрешность	Погрешность измерения входного сигнала в соответствии с DIN EN 60770, NE145 1)	Средний температурный коэффициент (ТС) на каждый 10 К отклонения температуры окружающей среды от T _{ref}	Долговременный дрейф в соответствии с МЭК 61298-2 в год
J / -150 +1200 °C (-238 +2192 °F)	≤ 0 °C: 0,45 K + 0,3 % IMVI ≥ 0 °C: 0,45 K + 0,045 % MV	±1,7 K	40 мкВ / 0,1 % MV (в зависимости от
K / -150 +1300 °C (-238 +2372 °F)	≤ 0 °C: 0,6 K + 0,3 % IMVI ≥ 0 °C: 0,6 K + 0,06 % MV		того, что больше)
B / 450 1820 °C (842 3308 °F)	≤ 1000 °C: 2,5 K + 0,3 % IMV - 1000I ≥ 1000 °C: 2,5 K		
N / -150 +1300 °C (-238 +2372 °F)	≤ 0 °C: 0,75 K + 0,3 % IMVI ≥ 0 °C: 0,75 K + 0,045 % MV		
R / 50 1,600 °C (122 2,912 °F)	≤ 400 °C: 2,2 K + 0,18 % IMVI ≥ 400 °C: 2,2 K + 0,015 % MV		
S / 50 1,600 °C (122 2,912 °F)	≤ 400 °C: 2,2 K + 0,18 % IMVI ≥ 400 °C: 2,2 K + 0,015 % MV		
T / -150 +400 °C (-238 +752 °F)	≤ 0 °C: 0,6 K + 0,3 % IMVI ≥ 0 °C: 0,6 K + 0,015 % MV		
E / -150 +1000 °C (-238 +1832 °F)	≤ 0 °C: 0,45 K + 0,3 % IMVI ≥ 0 °C: 0,45 K + 0,045 % MV	00	
C / 0 2315 °C (32 4199 °F)	≤ 1000 °C: 2,2 K + 0 % IMVI ≥ 1000 °C: 2,2 K + 0,175 % MV - 1000		
A / 0 2315 °C (32 4199 °F)	≤ 1000 °C: 2,4 K + 0 % IMVI ≥ 1000 °C: 2,4 K + 0,175 % MW - 1000		
L (DIN 43710) / -150 +900 °C (-238 +1652 °F)	≤ 0 °C: 0,45 K + 0,15 % IMVI ≥ 0 °C: 0,45 K + 0,045 % MV		
L (FOCT R 8.585 - 2001) / -150 +900 °C (-238 +1652 °F)	≤ 0 °C: 0,45 K + 0,15 % IMVI ≥ 0 °C: 0,45 K + 0,045 % MV		
Холодный спай	≤ ±1,5 K (≤ ±2,7 °F)	±0,1 K (±1,8 °F)	≤ 0,4 K (≤ 0,72 °F)
Погрешность изм. выхода (ЦАП)	0,045 % от ВПИ	0,06 % от ВПИ	0,1 % от ВПИ
Влияние питания при изменении напряжения на каждый 1 В от U _{i_ref}	±0,005 % от ВПИ		

MV = измеренное значение ВПИ = Верхний предел измерения

¹⁾ В случае помех, вызванных высокочастотными электромагнитными полями в диапазоне частот от 80 до 400 МГц, возможно увеличение погрешности до 0,8 %. При помехах от переходных процессов (например, бросков, всплесков, электростатического разряда) следует принимать во внимание увеличение погрешности до 1,5 %.

Примеры вычисления погрешности преобразователя

Пример 1

Тип термопары К Диапазон измер. 0 ... 400 °C → шкала 400 K (720 °F) Температура окружающей среды 25 °C (77 °F) Измеренное значение 300 °С (572 °F) ±0,78 K Входной сигнал $300 \,^{\circ}\text{C} > 0 \,^{\circ}\text{C} \rightarrow 0,6 \,\text{K} + 0,06 \,^{\circ}\text{x MV}$ (±1,4 °F) 0,6 K + (0,06 % x 300 °C) Выходной сигнал ±0,135 K 0,045 % x 300 K (±0,243 °F) Холодный спай ±1,5 K 1,5 K (±2,7 °F) Погрешность измерения (типовое значение) ±1,7 K $\sqrt{\text{вход}^2 + \text{выход}^2 + \text{холодн. спай}^2}$ (±3,06 °F) ±2,42 K Погрешность измерения (максимальное значение) (±4,36 °F) $Bxoд + TC_{вxoд} + выход + холодный спай$

Пример 2

Тип термопары К Диапазон измер. 0 600 °C → шкала 600 K (1080 °F) Температура окружающей среды 45 °C (113 °F) Измеренное значение 550 °C (1022 °F)		
Входной сигнал 550 °C > 0 °C → 0,6 K + 0,06 % x MV 0,6 K + (0,06 % x 550 °C)	±0,93 K (±1,67 °F)	
Температурный коэффициент входа 45 °C - 26 °C = 9 K → 2 x 10 K	±0,4 K (±0,72 °F)	
Выходной сигнал 0,045 % x 600 K	±0,27 K (±0,49 °F)	
Температурный ноэффициент выхода 45°C - 26°C = 19K → 2x 10 K 0.06°x \times 600 K x 2	±0,72 K (±1,3 °F)	
Холодный спай 1,5 K	±1,5 K (±2,7 °F)	
Температурный ноэффициент холодного спая 45°C - 26°C = 19K → 2x 10K	±4,0 K (±7,2 °F)	
Погрешность измерения (типовое значение) $√$ вход 2 + $TC_{вход}^2$ + выход 2 + $TC_{выход}^2$ + холодный спай 2 + $TC_{холодный спай}^2$	±4,5 K (±8,1 °F)	
Погрешность измерения (максимальное значение) Вход + TC _{вход} + выход + холодный спай	±7,8 K (±14,04 °F)	

Мониторинг	
Мониторинг обрыва чувствительного элемента	Конфигурируется через программное обеспечение По умолчанию: выход за нижний предел
Мониторинг диапазона измерения	Мониторинг установленного диапазона измерения для верхнего/ нижнего значений отклонения, конфигурируется По умолчанию: неактивен
Отставание показаний (внутренняя температура электронного модуля)	Сохранение в памяти максимального значения температуры окружающей среды (сброс невозможен)

Норпус	T16.Н версия для монтажа в соединительную головку	T16.R для монтажа на DIN-рейку
Материал	Пластмасса РВТ, усиленная стекловолокном	Пластмасса
Macca	Приблизительно 50 г (приблизительно 1,76 унции)	Приблизительно 0,2 кг (приблизительно 7,1 унции)
Пылевлагозащита	IP00 (электронные модули полностью герметичны)	IP20
Соединительные клеммы, невыпадающий винт, площадь поперечного сечения проводников ■ Одножильный проводник ■ Многожильный проводник с кабельным наконечником	0,14 2,5 мм² (24 14 AWG) 0,14 1,5 мм² (24 16 AWG)	0,14 2,5 мм² (24 14 AWG) 0,14 2,5 мм² (24 14 AWG)
Рекомендуемая для использования отвертка	Крестовая (наконечник Pozidrive), размер 2 (ISO 8764)	Шлицевая, 3 x 0,5 мм (ISO 2380)
Рекомендуемое значение момента затяжки	0,5 Нм	0,5 Нм

Условия окружающей среды	
Диапазон допустимых температур окружающей среды	{-50} -40 +85 {+105} °C {-58} -40 +185 {+221} °F
Климатический класс в соответствии с МЭК 654-1:1993	Cx (-40 +85 °C / -40 +185 °F, 5 95 % относит. влажности)
Максимально допустимая влажность ■ Модель Т16.Н в соответствии с МЭК 60068-2-38:2009	Макс. отклонение температуры тестирования 65 °C (149 °F) / -10 °C (14 °F), 93 % ± 3 % относит. влажности
■ Модель T16.R в соответствии с МЭК 60068-2-30:2005	Макс. температура тестирования 55 °C (131 °F), 95 % относит. влажности
Виброустойчивость в соответствии с МЭК 60068-2-6:2008	Тестовая частота Fc: 10 2000 Гц; 10 g, амплитуда 0,75 мм (0,03 дюйма)
Ударопрочность в соответствии с МЭК 68-2-27:2009	Ускорение / продолжительность удара Модель Т16.H: 100 g / 6 мс Модель Т16.R: 30 g / 11 мс
Соляной туман в соответствии с МЭК 68-2-52:1996, МЭК 60068-2-52:1996	Уровень 1
Конденсация	Модель T16.H: допустима Модель T16.R: допустима в вертикальном монтажном положении
Свободное падение в соответствии с МЭК 60721-3-2:1997, DIN EN 60721-3-2:1998	Высота падения 1,5 м (4,9 фута)
Элентромагнитная совместимость (ЭМС) в соответствии с DIN EN 55011:2010, DIN EN 61326-2-3:2013, NAMUR NE21:2012, GL 2012 VI Часть 7	Излучение (группа 1, класс В) и помехоустойчивость (промышленное применение) [ВЧ поле, ВЧ кабель, электростатический разряд, всплеск, бросок]

^{ } Позиции в фигурных скобках можно заказать за дополнительную плату, кроме версии АТЕХ для монтажа в соединительную головку и модели Т16.R для монтажа на DIN-рейку.

Характеристики безопасности (взрывобезопасное исполнение)

■ Модели T16.x-AI, T16.x-AC

Параметры токовой петли для искробезопасного соединения (4 ... 20 мА)

Защита от воспламенения Ex ia IIC/IIB/IIA, Ex ia IIIC или Ex ic IIC/IIB/IIA

Параметр	Модели Т16.x-AI, Т16.x-AC	Модели T16.x-AI	
	Взрывоопасные	Взрывоопасные	
	газосодержащие среды	пылесодержащие среды	
Клеммы	+/-	+/-	
Напряжение U _i	30 В пост. тока	30 В пост. тока	
Ток I _i	130 мА	130 мА	
Мощность P _i	800 мВт	750/650/550 мВт	
Эффективная внутренняя емкость С _і	7,8 нФ	7,8 нФ	
Эффективная внутренняя индуктивность L _i	20 мкГн	20 мкГн	

Цепь чувствительного элемента

Параметр	Модели Т16.x-AI	Модель T16.x-AC
	Ex ia IIC/IIB//IIA	Ex ic IIC/IIB//IIA
	Ex ia IIIC	
Клеммы	1 - 2	
Напряжение U _o	6,6 В пост. тока	
Ток Іо	4 мА	
Мощность P _o	10 мВт	
Характеристическая кривая	Линейная	

Из-за требований к расстояниям, предъявляемым соответствующими стандартами, искробезопасная цепь питания и сигнальная цепь, а также искробезопасная цепь чувствительного элемента следует считать гальванически связанными друг с другом.

Диапазон температур окружающей среды

Применение	Диапазон температур окружающей среды	Температурный класс	Мощность Р _і
Группа II	$-40 ^{\circ}\text{C} (-40 ^{\circ}\text{F}) \le T_a \le +85 ^{\circ}\text{C} (+185 ^{\circ}\text{F})$	T4	800 мВт
	$-40~^{\circ}\text{C}~(-40~^{\circ}\text{F}) \le T_a \le +70~^{\circ}\text{C}~(+158~^{\circ}\text{F})$	T5	800 мВт
	$-40 ^{\circ}\text{C} (-40 ^{\circ}\text{F}) \le T_a \le +55 ^{\circ}\text{C} (+131 ^{\circ}\text{F})$	T6	800 мВт
Группа IIIC	$-40 ^{\circ}\text{C} (-40 ^{\circ}\text{F}) \le T_a \le +40 ^{\circ}\text{C} (+104 ^{\circ}\text{F})$	N/A	750 мВт
	$-40 ^{\circ}\text{C} (-40 ^{\circ}\text{F}) \le T_a \le +75 ^{\circ}\text{C} (+167 ^{\circ}\text{F})$	N/A	650 мВт
	$-40 {}^{\circ}\text{C} (-40 {}^{\circ}\text{F}) \le T_a \le +85 {}^{\circ}\text{C} (+185 {}^{\circ}\text{F})$	N/A	550 мВт

N / A = неприменимо

Комментарии:

 U_{o} : Максимальное напряжение в любом проводнике относительно других трех

I₀: Максимальный выходной ток при самом неудачном соединении резисторов ограничения тока

Р_о: U_о х I_о, деленное на 4 (линейная характеристика)

■ Модели T16.x-AN, T16.x-AE

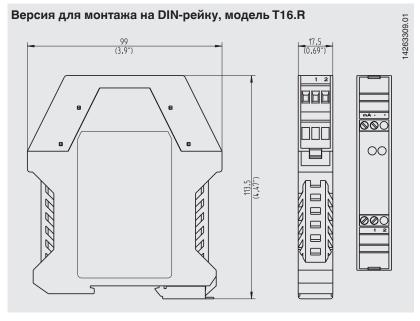
Силовая и сигнальная цепь (токовая петля 4 ... 20 мА)

Тип защиты от воспламенения Ex nA IIC/IIB/IIA

Параметр	Модели T16.x-AN, T16.x-AE
	Взрывоопасные
	газосодержащие среды
Клеммы	+/-
Напряжение U _i	35 В пост. тока
Ток I _i	21,5 mA

Цепь чувствительного элемента

Тип защиты от воспламенения Ex nA IIC/IIB/IIA


Параметр	Модели T16.x-AN, T16.x-AE
Клеммы	1 - 2
Мощность P ₀	2,575 B x 0,1 мA → 0,256 мВт 2,575 В пост. тока 0,1 мA

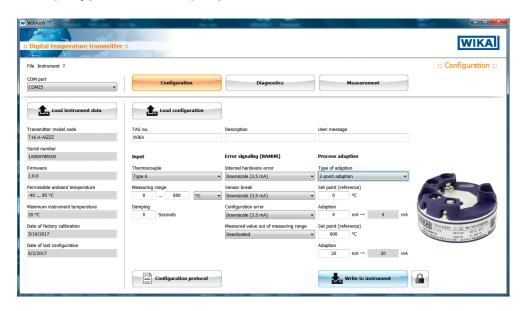
Диапазон температур окружающей среды

Применение	Диапазон температур окружающей среды	Температурный класс
Группа II	$-40 ^{\circ}\text{C} (-40 ^{\circ}\text{F}) \le T_a \le +85 ^{\circ}\text{C} (+185 ^{\circ}\text{F})$	T4
	$-40 ^{\circ}\text{C} (-40 ^{\circ}\text{F}) \le T_a \le +70 ^{\circ}\text{C} (+158 ^{\circ}\text{F})$	T5
	$-40 ^{\circ}\text{C} (-40 ^{\circ}\text{F}) \le T_a \le +55 ^{\circ}\text{C} (+131 ^{\circ}\text{F})$	Т6

Размеры в мм

Размеры преобразователя, монтируемого в соединительную головку, соответствуют соединительной головке формы В по DIN с увеличенным монтажным пространством, например, модели WIKA BSZ.

Преобразователи, монтируемые на DIN-рейку, подходят для установки на все стандартные типы DIN-реек в соответствии со стандартом МЭК 60715.


Подключение программатора PU-548

Внимание:

Для непосредственной связи с ПК/ноутбуком через последовательный интерфейс требуется программатор модели PU-548 (см. раздел "Аксессуары").

Конфигурационное программное обеспечение WIKAsoft-TT

Аксессуары

Конфигурационное программное обеспечение WIKA: бесплатная загрузка с веб-сайта www.wika.com

Модель	Исполнение	Код заказа
Программатор, модель PU-548	 Простота использования Светодиод состояния Номпактная конструкция Для программатора и датчика источник питания не требуется В комплект входит 1 магнитный быстроразъемный соединитель модели magWIK (вместо программатора модели PU-448) 	14231581
Магнитный разъем magWIK	 ■ Заменяет зажимы типа "крокодил" и клеммы НАRТ® ■ Быстрое, безопасное и надежное электрическое соединение ■ Для всех процедур конфигурирования и калибровки 	14026893
Переходник	 ■ Подходит для TS 35 в соответствии с DIN EN 60715 (DIN EN 50022) или TS 32 в соответствии с DIN EN 50035 ■ Материал: пластмасса / нержавеющая сталь ■ Размеры: 60 x 20 x 41,6 мм (2,3 x 0,7 x 1,6 дюйма) 	3593789
Переходник	 ■ Подходит для TS 35 в соответствии с DIN EN 60715 (DIN EN 50022) ■ Материал: углеродистая сталь, луженая ■ Размеры: 49 x 8 x 14 мм 	3619851

Нормативные документы

Логотип	Описание	Страна
CE	Сертификат соответствия ЕС ■ Директива по электромагнитной совместимости EN 61326 излучение (группа 1, класс В) и помехоустойчивость (промышленное применение) ■ Директива RoHS	Европейский союз
⟨€x ⟩	■ Директива ного Директива ATEX (опция) Опасные зоны - Ex i Зона 0 газ [II 1G Ex ia IIC T6 T4 Ga] Зона 2 газ [II 3G Ex ic IIC T6 T4 Gc X] Зона 20 пыль [II 1D Ex ia IIIC T135 °C Da] - Ex e Зона 2 газ [II 3G Ex ec IIC T6 T4 Gc X] - Ex n Зона 2 газ [II 3G Ex nA IIC T6 T4 Gc X]	
IEC IEĈEX	IECEx (опция) Опасные зоны - Ex i Зона 0 газ [Ex ia IIC T6 T4 Ga] Зона 2 газ [Ex ic IIC T6 T4 Gc X] Зона 20 пыль [Ex ia IIIC T135 °C Da] - Ex e Зона 2 газ [Ex ec IIC T6 T4 Gc X] - Ex n Зона 2 газ [Ex n A IIC T6 T4 Gc X]	Международный
APPROVED	FM (опция) Опасные зоны Класс I, раздел 1 или 2, группы A/B/C/D, T6 T4 Класс I, зона 0/1, AEx ia IIC T6 T4	США
(B)	CSA (опция) Опасные зоны Класс I, раздел 1 или 2, группы A/B/C/D, T6 T4 Класс II, раздел 1 или 2, группы E/F/G, T6 T4 / T135 °C, класс III Класс I, зона 0 или 1, Ex ia [ia Ga] IIC T6 T4 Ga Класс I, зона 20 или 21, Ex ia [ia Da] IIIC T135 °C Da	Канада
EHLEx	EAC (опция) Директива по электромагнитной совместимости Опасные зоны - Ex i Зона 0 газ [0 Ex ia IIC T4/T5/T6] Зона 1 газ [1 Ex ib IIC T4/T5/T6] Зона 2 газ [2 Ex ic IIC T4/T5/T6] Зона 20 пыль [DIP A20 Та 135 °C] Зона 21 пыль [DIP A21 Та 135 °C] - Ex n Зона 2 газ [Ex nA IIC T4/T5/T6] - Ex e Зона 2 газ [2 Ex e IIC T4/T5/T6]	Евразийское экономическое сообщество
©	ГОСТ (опция) Свидетельство о первичной поверке средства измерения	Россия
6	КазИнМетр(опция) Свидетельство о первичной поверке средства измерения	Казахстан
	ДНОП - МакНИИ (опция) ■ Добыча полезных ископаемых ■ Опасные зоны - Ex i Зона 0 газ [II 1G Ex ia IIC T6 T4 Ga] Зона 20 пыль [II 1D Ex ia IIIC T135 °C Da]	Украина
	Uzstandard (опция) Свидетельство о первичной поверке средства измерения	Узбекистан

02/2020 RU based on 06/2019 EN

Сертификаты (опция)

- Протокол 2.2
- Сертификат 3.1

Нормативные документы и сертификаты приведены на веб-сайте

Информация для заказа

Модель / Взрывозащита / Дополнительные сертификаты / Допустимая температура окружающей среды / Конфигурация / Сертификаты / Опции

© 03/2017 WIKA Alexander Wiegand SE & Co. KG, все права защищены . Спецификации, приведенные в данном документе, отражают техническое состояние изделия на момент публикации данного документа. Возможны технические изменения характеристик и материалов.

WIKA типовой лист TE 16.01 · 06/2019

Страница 11 из 11

